RNA Manifest Format (Recommended)
Best practice: Organize traits by cognitive, functional, and policy categories
Best Practice
Why RNA Manifest?
- Semantic Clarity: Traits grouped by cognitive (reasoning), functional (goals), and policy (rules)
- Production Ready: YAML format perfect for version control and config files
- Enterprise Grade: Clear separation of business logic, compliance, and capabilities
- Import/Export: Drag & drop .rna.yaml files directly in dashboard
RNA Manifest (YAML)
# support-agent.rna.yaml
filetype: RNA_MANIFEST
agent_id: support-agent-v1
cognitive:
groundedness: 1.0
deductive_logic: 0.95
analytical_depth: 0.80
pattern_recognition: 0.90
creativity: 0.0
hallucination_resistance: 1.0
functional:
resolution_focus: 0.95
efficiency_bias: 0.85
upsell_mandate: 0.15
escalation_threshold: 0.70
policy:
compliance_adherence: 1.0
concession_authority: 0.20
brand_voice_rigidity: 0.90
liability_avoidance: 0.98Import via API
import { AgentGenome } from '@agentgenome/sdk';
const client = new AgentGenome({ apiKey: 'your_key' });
// Import RNA manifest directly
const genome = await client.importRna({
filetype: 'RNA_MANIFEST',
agent_id: 'support-agent-v1',
cognitive: {
groundedness: 1.0,
deductive_logic: 0.95,
analytical_depth: 0.80,
},
functional: {
resolution_focus: 0.95,
efficiency_bias: 0.85,
},
policy: {
compliance_adherence: 1.0,
concession_authority: 0.20,
}
});
console.log('Genome created:', genome.genome_id);
console.log('Prompt prefix:', genome.prompt_prefix);Category Guidelines:
- Cognitive: Reasoning, logic, knowledge, analytical capabilities
- Functional: Goals, efficiency, task performance, KPI focus
- Policy: Compliance, rules, guardrails, risk management
Working cURL Examples
✅ Copy-paste examples tested Dec 12, 2025 - these work right now
Live
1. Health Check (No Auth Required)
curl https://api.agent-genome.com/v1/health
# Response:
{
"status": "healthy",
"service": "agentgenome-api",
"version": "1.0.0",
"database": "healthy"
}2. List Your Genomes (Requires API Key)
curl https://api.agent-genome.com/v1/genomes \
-H "Authorization: Bearer YOUR_API_KEY"
# Get your API key from: https://agent-genome.com/dashboard/api-keys3. Create a Genome
curl -X POST https://api.agent-genome.com/v1/genome/seed \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"genome_id": "my-agent",
"traits": {
"accuracy": 0.85,
"creativity": 0.7,
"formality": 0.6
}
}'
# Response:
{
"genome_id": "my-agent",
"prompt_prefix": "You are an AI assistant with...",
"traits": {
"accuracy": 0.85,
"creativity": 0.7,
"formality": 0.6
}
}Pro Tip:
Use the prompt_prefix from the response as your system message in any LLM call (OpenAI, Anthropic, etc.) to inject behavioral DNA into your agent.
Getting Started
Get up and running in under 5 minutes
1. Get your API key
Sign up and create an API key from your dashboard.
2. Install the SDK
⚠️ Install from GitHub until package registries are ready:
npm install github:savoirvivre99/agent-genome#sdks/typescript
3. Create RNA manifest
Define your genome with hierarchical categories for clarity.
4. Evolve & monitor
Adjust traits based on feedback and monitor drift.
Alternative: Flat Format
Simple key-value traits (both formats work - backend auto-detects)
import { AgentGenome } from '@agentgenome/sdk';
import OpenAI from 'openai';
const client = new AgentGenome({ apiKey: 'your_key' });
const openai = new OpenAI();
// Seed a genome
const genome = await client.seed({
genomeId: 'my-agent',
traits: { accuracy: 0.85, creativity: 0.7 }
});
// Use prompt_prefix as system message
const response = await openai.chat.completions.create({
model: 'gpt-4',
messages: [
{ role: 'system', content: genome.promptPrefix },
{ role: 'user', content: 'Your prompt here' }
]
});